Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.18.481058

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics that are effective against a variety of strains of the virus. Herein, we characterize a human VH domain, F6, which we generated by sequentially panning large phage displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that neutralized Omicron pseudoviruses with a half-maximal neutralizing concentration (IC50) of 4.8 nM in vitro. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 VOCs - including the recently emerged Omicron variant - and highlight a vulnerable epitope within the spike protein RBD that may be exploited to achieve broad protection against circulating variants.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.19.473380

ABSTRACT

The newly reported Omicron variant is poised to replace Delta as the most rapidly spread SARS-CoV-2 variant across the world. Cryo-EM structural analysis of the Omicron variant spike protein in complex with human ACE2 reveals new salt bridges and hydrogen bonds formed by mutated residues R493, S496 and R498 in the RBD with ACE2. These interactions appear to compensate for other Omicron mutations such as K417N known to reduce ACE2 binding affinity, explaining our finding of similar biochemical ACE2 binding affinities for Delta and Omicron variants. Neutralization assays show that pseudoviruses displaying the Omicron spike protein exhibit increased antibody evasion, with greater evasion observed in sera obtained from unvaccinated convalescent patients as compared to doubly vaccinated individuals (8- vs 3-fold). The retention of strong interactions at the ACE2 interface and the increase in antibody evasion are molecular factors that likely contribute to the increased transmissibility of the Omicron variant.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.17.473178

ABSTRACT

Mutations in the spike glycoproteins of SARS-CoV-2 variants of concern have independently been shown to enhance aspects of spike protein fitness. Here, we report the discovery of a novel antibody fragment (V H ab6) that neutralizes all major variants, with a unique mode of binding revealed by cryo-EM studies. Further, we provide a comparative analysis of the mutational effects within variant spikes and identify the structural role of mutations within the NTD and RBD in evading antibody neutralization. Our analysis shows that the highly mutated Gamma N-terminal domain exhibits considerable structural rearrangements, partially explaining its decreased neutralization by convalescent sera. Our results provide mechanistic insights into the structural, functional, and antigenic consequences of SARS-CoV-2 spike mutations and highlight a spike protein vulnerability that may be exploited to achieve broad protection against circulating variants.

4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.02.458774

ABSTRACT

The Delta and Kappa variants of SARS-CoV-2 co-emerged in India in late 2020, with the Delta variant underlying the resurgence of COVID-19, even in countries with high vaccination rates. In this study, we assess structural and biochemical aspects of viral fitness for these two variants using cryo-electron microscopy (cryo-EM), ACE2-binding and antibody neutralization analyses. Both variants demonstrate escape of antibodies targeting the N-terminal domain, an important immune hotspot for neutralizing epitopes. Compared to wild-type and Kappa lineages, Delta variant spike proteins show modest increase in ACE2 affinity, likely due to enhanced electrostatic complementarity at the RBD-ACE2 interface, which we characterize by cryo-EM. Unexpectedly, Kappa variant spike trimers form a novel head-to-head dimer-of-trimers assembly, which we demonstrate is a result of the E484Q mutation. The combination of increased antibody escape and enhanced ACE2 binding provides an explanation, in part, for the rapid global dominance of the Delta variant.


Subject(s)
Poult Enteritis Mortality Syndrome , COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.25.457711

ABSTRACT

The recently emerged SARS-CoV-2 South African (B. 1.351) and Brazil/Japan (P.1) variants of concern (VoCs) include a key mutation (N501Y) found in the UK variant that enhances affinity of the spike protein for its receptor, ACE2. Additional mutations are found in these variants at residues 417 and 484 that appear to promote antibody evasion. In contrast, the Californian VoCs (B.1.427/429) lack the N501Y mutation, yet exhibit antibody evasion. We engineered spike proteins to express these RBD VoC mutations either in isolation, or in different combinations, and analyzed the effects using biochemical assays and cryo-EM structural analyses. Overall, our findings suggest that the emergence of new SARS-CoV-2 variant spikes can be rationalized as the result of mutations that confer either increased ACE2 affinity, increased antibody evasion, or both, providing a framework to dissect the molecular factors that drive VoC evolution.

6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.11.426269

ABSTRACT

The recently reported ''UK variant'' of SARS-CoV-2 is thought to be more infectious than previously circulating strains as a result of several changes, including the N501Y mutation. Here, we report cryo-EM structures of SARS-CoV-2 spike protein ectodomains with and without the N501Y mutation, in complex with the VH fragment of the potent neutralizing antibody, VH -Fc ab8. The mutation results in localized structural perturbations near Y501, but VH -Fc ab8 retains the ability to bind and neutralize pseudotyped viruses expressing the N501Y mutant with efficiencies comparable to that of unmutated viruses. Our results show that despite the higher affinity of ACE2 for the N501Y mutant, it can still be neutralized efficiently by an antibody that binds epitopes in the receptor binding domain of the SARS-CoV-2 spike protein.

SELECTION OF CITATIONS
SEARCH DETAIL